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1 Introduction

Most of the effort in CFD research so far has been in developing efficient algorithms for different applications,

assuming an ideal input with precisely defined computational domains. With the field reaching now some degree of

maturity, we naturally pose the more general question of how to model uncertainty and stochastic input, and how

to formulate algorithms in order for the simulation output to reflect accurately the propagation of uncertainty. To

this end, the Monte Carlo approach can be employed but it is computationally expensive and it is only used as the

last resort. The sensitivity method is an alternative more economical approach, based on moments of samples, but

it is less robust and it depends strongly on the modeling assumptions [1]. There are other more suitable methods

for physical applications, and there has already been good progress in other fields, most notably in seismology and

structural mechanics. A number of papers and books have been devoted to this subject, most notably with the

work of Ghanem and others, e.g. [2, 3, 4, 5, 6, 7, 8, 9]. On the theoretical side, the work of Papanicolaou and his

collaborators has addressed many aspects of wave propagation and other physical processes in random media, see

for example [10].

An effective approach pioneered by Ghanem & Spanos [5] in the context of finite elements for solid mechanics is

based on a spectral representation of the uncertainty. This allows high-order representation, not just first-order as

in most perturbation-based methods, at high computational efficiency. It is based on the original ideas of Wiener

(1938) on homogeneous chaos [11, 12] and the Hermite polynomials. The effectiveness of Hermite expansions was

also recognized by Chorin (1971) [13] who employed Wiener-Hermite series to substantially improve both accuracy

and computational efficiency of Monte Carlo algorithms. However, the limitation of prematurely truncated Wiener-

Hermite expansions in applications of turbulence has also been diagnosed [14].

In this paper we consider the linear advection equation with a random transport velocity as a prototype problem,

and as a first attempt to model uncertainty in propagation phenomena using polynomial chaos. The objective is to

evaluate the Wiener-Hermite polynomial chaos in terms of its accuracy and efficiency. Given the simple equation

considered, we are able to derive an exact solution for the mean and the variance of the stochastic solution. A

new element in this paper is the representation of the stochastic input using Karhunen-Loève expansions both for a

specified covariance kernel as well as a kernel constructed explicitly following a dynamical systems approach. In the

simulations, we consider both Gaussian and log-normal distributions of the transport velocity. In the next sections,

we first formulate the polynomial chaos algorithm, derive the exact solutions, and subsequently discuss different

ways of input representation. We then present simulations with time- and space-dependent transport velocity, and
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we conclude with a brief summary.

2 Polynomial Chaos: Wiener-Hermite Expansions

We consider the stochastic advection equation



∂u

∂t
+ V (x, t, θ)

∂u

∂x
= 0 ∀(t, x) ∈ [0, T ]×D = [−1, 1]

u(t = 0, x) = g(x) ∀x ∈ D

Periodic boundary conditions

(1)

Here θ is a random parameter. We will examine cases with both time-independent as well as time-dependent transport

velocity.

We first assume that the transport velocity V (x, θ) is only space-dependent and is a given random process with

mean value and variance satisfying

V̄ (x) = E{V (x, θ)} = 1 and E{|V (x, θ)|2} < ∞ (2)

where the covariance function

C(x, y) = E{V (x, θ)V (y, θ)} (3)

is continuous. Its orthogonal decomposition is obtained by the Karhunen-Loève expansion

V (x, θ) = V (x) +
M∑

k=1

√
λkfk(x)ξk(θ) =

M∑
k=0

gk(x)ξk(θ), (4)

where ξk are Gaussian variables, and M is the dimension. The eigenvalues λk and corresponding eigenfunctions fk

satisfy the Helmholtz integral equation

∫
D
C(x, y)fk(y)dy = λkfk(x). (5)

By assuming that u(t, x, θ) is a second-order process, that is u(t, x, θ) has a finite variance, the theorem of Cameron

& Martin [15] guarantees that the solution u(t, x, θ) can be represented in terms of polynomials, i.e.

u(t, x, θ) = a0Γ0 +
∞∑

i1=1

ai1Γ1(ξi1(θ)) +
∞∑

i1=1

i1∑
i2=1

ai1i2Γ2(ξi1 (θ), ξi2 (θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(ξi1(θ), ξi2 (θ), ξi3 (θ)) + . . .

(6)

In the above equation, Γn(ξi1 , ξi2 , . . . , ξin) denotes the polynomial chaos of order n in the Gaussian variables

(ξi1 , ξi2 , . . . , ξin).
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The general expression for generating these polynomials is given by

Γn(ξi1 , ξi2 , . . . , ξin) = (−1)ne
�ξ·�ξt/2 ∂ne−�ξ·�ξt/2

∂ξi1∂ξi2 . . . ∂ξin

(7)

where the vector �ξ consisting of the n random variables (ξi1 , ξi2, . . . , ξin).

Having equation (7), the decomposition in equation (6) can be thought of as

u(t, x, θ) =

Gaussian part︷ ︸︸ ︷
a0Γ0 +

∞∑
i1=1

ai1Γ1(ξi1(θ))

+
∞∑

i1=1

i1∑
i2=1

ai1i2Γ2(ξi1 (θ), ξi2 (θ)) +
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(ξi1(θ), ξi2 (θ), ξi3 (θ)) + . . .

︸ ︷︷ ︸
non-Gaussian part

For a Gaussian process, only the first term is present and thus this expansion reduces to the Karhunen-Loève

representation of the same process [16].

Equation (6) can be re-written in the more familiar form

u(t, x, θ) =
P∑

i=0

αi(t, x)Ψi(�ξ(θ)), (8)

where there exists one-to-one correspondence between the Γn(ξi1 , ξi2 , · · · , ξin) and Ψi(�ξ(θ)) as well as between the

coefficients αi(t, x) and ai1,i2,... ,in . The total number of polynomial chaoses (P + 1) used in the expansion is

(M + p)!
M !p!

,

where M and p refers to the dimension of the stochastic input and the order of the polynomial chaos, respectively.

In equation (8), αi(t, x) are the deterministic coefficients and Ψi(�ξ(θ)) is a trial basis in the space of random

variables. This basis is the set of generalized multi-dimensional Hermite polynomials in the quantity �ξ(θ). This

representation can be refined along the random dimension either by adding more random variables (dimension M)

or by increasing the maximum order of polynomials included in the polynomial chaos expansion (order p).

If the solution is known, then the coefficients αi in the expansion (8) can be obtained from

αi(t, x) =
< u(t, x, θ),Ψi(�ξ(θ)) >

< Ψi(�ξ(θ)),Ψi(�ξ(θ)) >
, (9)

where

< Ψm(�ξ(θ)),Ψn(�ξ(θ)) >=
∫

Ω

Ψm(�ξ(θ))Ψn(�ξ(θ))dP (10)

is the inner product (statistical average).
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Substituting the above in the advection equation (1), it yields

∂

∂t

P∑
i=0

αi(t, x)Ψi(�ξ(θ)) + (
M∑

j=0

ξj(θ)gj(x))
∂

∂x

P∑
i=0

αi(t, x)Ψi(�ξ(θ)) = 0. (11)

Assuming that we discretize in space with a spectral method we write

αi(x, t) =
N∑

k=0

αik(t)Φk(x) (12)

where Φk(x) denotes the trial basis in space; here, we employ the Fourier exponentials, i.e. Φk(x) = eikx. Upon

substitution, we obtain

P∑
i=0

N∑
k=0

∂αik(t)
∂t

Φk(x)Ψi(�ξ(θ)) +
P∑

i=0

M∑
j=0

N∑
k=0

ξj(θ)gj(x)Ψi(�ξ(θ))αik(t)
∂Φk(x)

∂x
= 0. (13)

We now apply a standard Galerkin projection, first in space x

P∑
i=0

N∑
k=0

∂αik(t)
∂t

Ψi(�ξ(θ))
∫
D
Φk(x)Φl(x)dx+

P∑
i=0

M∑
j=0

N∑
k=0

ξj(θ)Ψi(�ξ(θ))αik(t)
∫
D
gj(x)

∂Φk(x)
∂x

Φl(x)dx = 0

for l = 0, 1, 2, . . . , N

(14)

We denote by

Ikl =
∫
D
Φk(x)Φl(x)dx

the mass matrix, and by

Ijkl =
∫
D
gj(x)

∂Φk(x)
∂x

Φl(x)dx,

the derivative matrix, to arrive at

P∑
i=0

N∑
k=0

Ikl
∂αik(t)

∂t
Ψi(�ξ(θ)) +

P∑
i=0

M∑
j=0

N∑
k=0

Ijklαik(t)ξj(θ)Ψi(�ξ(θ)) = 0

for l = 0, 1, 2, . . . , N

(15)

By analogy with the deterministic approach, we use a Galerkin projection for the random variable as well, i.e. we

multiply the system (15) by Ψm(�ξ(θ)) and take the statistical average defined in equation (10). The orthogonality

property of Ψi(�ξ(θ)) is employed to arrive at

N∑
k=0

Ikl
∂αmk(t)

∂t
< ΨmΨm > +

P∑
i=0

M∑
j=0

N∑
k=0

Ijkl αik(t) < ξjΨiΨm >= 0

for l = 0, 1, 2, . . . , N and m = 0, 1, 2, . . . , P

(16)
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Once the coefficients αik have been evaluated, the stochastic solution can be obtained from

u(t, x, θ) =
P∑

i=0

N∑
k=0

αn
ikΨm(�ξ(θ))Φk(x), (17)

where the superscript n here denotes time discretization.

We close the section by pointing out that the previous analysis remains unchanged in the case of V (x, θ) being

a non-Gaussian process. In that case, the polynomial chaos expansion is used to represent the process instead of

the Karhunen-Loève expansion. Consequently, the term < ΨjΨiΨm > replaces < ξjΨiΨm > in equation (16). A

more general approach that involves different trial bases from the Askey scheme of orthogonal polynomials has been

developed in [17].

3 Exact Stochastic Solutions

If the transport velocity V in equation (1) is a random function of the time t alone, the initial value problem can be

solved exactly by the method of characteristics or by a change of variables. We demonstrate the latter method here.

We remove the random positive variable V (t) from the equation by a change of variable t to τ as follows



dτ = V (t) dt

τ = 0 when t = 0.
(18)

The advection equation (1) is then reduced to



∂u

∂τ
+

∂u

∂x
= 0

u(x, 0) = g(x).
(19)

The solution to the above equation is simply given by

u(x, t) = g(x− τ), (20)

while the solution for τ is obtained by solving equation (18)

τ(t) =
∫ t

0

V (s)ds = ∆t

Q∑
j=1

vj . (21)

In order to evaluate the sum of the set of random variables vj in (21), we assume vj to be


v1 = aξ1

vi = cvi−1 + afξi for i = 2, 3, . . . , Q
(22)
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where a, c determine the degree of correlation of the input, and f2 = 1 − c2 to ensure that each vi has the same

variance a. Also, ξ1, ξ2, . . . , ξQ are a set of independent normal random variables of variance unity, i.e.,

ξi =
1√
2π

e
−
ξ2

2 ∀i = 1, 2, . . . , Q (23)

We obtain the following three cases :

Case I - Fully Correlated Input: For c = 1 and f = 0 the input is fully correlated, and

Q∑
j=1

vj = aQξ1 = aQξ

.

Case II - Mutually Independent: For c = 0 and f = 1 the input is mutually independent, and

Q∑
j=1

vj = a
√

Qξ

.

Case III- Partially Correlated Input:: For general values of c, we obtain

Q∑
j=1

vj = a[
1 + c

1− c
Q− 2c

(1− c)2
(1 − cQ)]1/2ξ.

Letting t = Q∆t, we obtain

τ(t) = ∆t

Q∑
j=1

vj =




atξ + V̄ t

a
√
t∆tξ + V̄ t

a[2At− 2A2(1 − e−t/A)]1/2ξ + V̄ t as (c → 1,∆t → 0)

(24)

We can now write the solution to equation(20) as

u(x, t) = u(x, τ(t)) = g(x− τ(t)) (25)

and obtain its mean by taking the expectation value of equation (25) with the normal distribution (23):

ū(x, t) =
1√
2πaσ

∫ ∞

−∞
g(x0)e

−
(x− x0 − V̄ t)2

2a2σ2 dx0 = sinπ(x+ 1− V̄ t)e−π2σ2a2/2, (26)

where σ is defined from

σ2 =




t2 for fully correlated case

(∆t)t for mutually independent case

2A[t−A(1− e−t/A)] for partially correlated case

(27)
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The variance of the random variable u(x, t) is obtained from

V ar(u) = E{u2} − ū2,

which together with the normal distribution (23) yields

V ar(u(x, t)) =
1
2
[1− cos 2π(x− V̄ t)e−2(πaσ)

2
]− ū2 =

1
2
(1− e−π2σ2a2

)[1 + cos 2π(x+ 1− V̄ t)e−π2σ2a2
], (28)

where g(x0) was set to sinπ(x0 + 1) in order to obtain equation (28).

4 Representation of Stochastic Inputs

We consider different representations of the stochastic inputs corresponding to covariance kernels specified or con-

structed explicitly following a dynamical systems approach.

4.1 Specified Covariance Kernels

In the case of time-dependent but space-independent transport velocity, i.e.

V (t, x, ω) = V (t, ω)

we use the exponential kernel

C(t, s) = exp{−|t− s|
b

},

where b is a parameter which has the same dimension as time t and is termed correlation length. It expresses the

rate at which the correlation decays between two time instants of the process. For the kernel under consideration,

the analytical solution to the integral equation (5) can be found in the following fashion:

Let T = [0, T ] where T designate the final time, and set c =
1
b
. The integral equation (5) becomes

∫ T

0

e−c|t−s|fk(s)ds = λkfk(t), (29)

which can be written as

∫ t

0

e−c(t−s)fk(s)ds+
∫ T

t

ec(t−s)fk(s)ds = λkfk(t), (30)

Since the integrands in (30) are continuous, differentiating (30) twice with respect to t yields

λf̈(t) = (−2c+ c2λ)f(t), (31)
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where the subscript k was omitted. The boundary conditions associated with (31) are

{
ḟ(0)− cf(0) = 0
ḟ(T ) + cf(T ) = 0

(32)

Making the substitution

ω2 =
2c− c2λ

λ
, (33)

the boundary value problem 


f̈(t) + ω2f(t) = 0
ḟ(0)− cf(0) = 0
ḟ(T ) + cf(T ) = 0

(34)

follows. Solutions to (34) are given by

f(t) = αcos(ωt) + βsin(ωt), (35)

with dispersion relation

(ω2 − c2) tanωT − 2cω = 0, (36)

from which ω can be determined. The normalized eigenfunctions are

f(t) =
ω
c cos(ωt) + sin(ωt)√

1
2
(1 +

ω2

c2
)T + (

ω2

c2
− 1)sin(2ωT )

4ω
+
1
2c
(1− cos(2ωT ))

(37)

When the transport velocity is space-dependent,

V (t, x, ω) = V (x, ω)

we use a similar kernel of the form employed by Ghanem & Spanos [18]

C(x, y) = exp{−|x− y|
b

}

A similar analysis as before produces analytical forms for the eigenvalues and eigenfunctions.

4.2 Dynamical Systems Approach

We also consider different ways for correlations to represent stochastic inputs, which can be useful to represent

discrete input. Specifically, we consider the following two processes:

uk = cuk−1 + afξk, (38)
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uk =
c

2
(uk+1 + uk−1) + afξk. (39)

The first process (38) is autoregressive of order 1 and corresponds to the Markov process. The second process is

termed bilateral autoregressive process due to its backward and forward dependence. The constant c is assumed to

be 0 ≤ c ≤ 1 in order to ensure that the processes is of finite variance. Here, ξk is a random variable of mean zero

and variance one, and f is a constant to be determined such that for the given values of a and c the variance of the

process is equal to a2.

We can construct numerically the covariance kernel and subsequently extract the eigenvalues and eigenfunctions

needed for the input. Alternatively, we can write

uk =
N−k+1∑

i=1

αiξk+i−1 +
N∑

i=N−k+2

αiξN−k+1 (40)

and solve for αi. A simple calculation based on projection and orthogonality of the Gaussian random variable ξi

yields the following expression for the mean value

E{uiuj} =
N−|i−j|∑

k=1

αkαk+|i−j| +
|i−j|∑
k=1

αkαN−(|i−j|−k). (41)

In figures 1 and 2 we give the eigenfunctions and compare the eigenspectra between a unilateral and a bilateral

autoregressive process. Periodic boundary conditions were assumed for these calculations.
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Figure 1: Eigenfunctions and eigenspectra corresponding to c = 0.5 and a = 1.
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Figure 2: Comparison between unilateral and bilateral eigenspectra.

5 Numerical Results

We consider the stochastic advection equation with initial condition

g(x) = sinπ(1 + x) x ∈ [−1, 1].

In the following we use Fourier collocation to treat the deterministic contributions. We also perform Monte Carlo

simulations to compare with the polynomial chaos results. For the latter we found it necessary to use a Lagrangian

approach in solving the stochastic advection equation. That is, we have implemented a solution based on charac-

teristics that avoids global spectral interpolation. In contrast, following an Eulerian approach leads to erroneous

results due to the lack of smoothness in the stochastic solution. Specifically, the Lagrangian and Eulerian numerical

solutions are initially very close to each other but for longer time integration errors in the Eulerian approach render

the solution erroneous.

In the following, we consider several cases corresponding to different types of stochastic input representation. We

employ both ad hoc type covariance kernels as well as kernels constructed based on a dynamical systems approach.
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5.1 Space-Independent Transport Velocity

First, we assume that V (t, x, θ) ≡ V (t, θ) and employ the kernel

C(s, t) = exp{−|t− s|
b

}

for the covariance matrix. We also perform a companion Monte Carlo simulation; this kernel corresponds to a

unilateral autoregressive process, as defined previously. For comparisons, we also obtain the analytical mean solution

and variance.

For the fully correlated case, figures 3 and 4 show the results for the mean and variance, respectively. Good

agreement between the solution obtained from the polynomial chaos simulation, the Monte Carlo simulation, and

the exact formulas is obtained.
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Figure 3: Mean solutions for the fully correlated case, after t = 1 , t = 3 and t = 5. The mean solution decays
exponentially with time.

For the partially correlated case and the mutually independent case similar conclusions to the fully cor-

related case can be drawn. Indeed, as shown by the figures 5 and 6, also figures 7 and 8, good agreement between

polynomial chaos simulation, Monte Carlo and exact formulas is established for both mean and variance. It is worth

mentioning that in the case of partial correlation, up toM = 6 stochastic dimensions were required for the polynomial

chaos simulation in order to agree with the exact formula.

12



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.15

0.2

0.25

0.3

0.35

0.4

x

V
ar

ia
nc

e

MCarlo
Exact 
PChaos

Figure 4: Variance of the solution for the fully correlated case, after t = 3.
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Figure 5: Mean solution for the partially correlated case, c = 0.5, after t = 5; M = 6 and p = 4.
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Figure 6: Variance of the solution for the partially correlated case, c = 0.5, after t = 5; M = 6 and p = 4.
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Figure 7: Mean solution for the mutually independent case, c approaches 0, after t = 3; M = 2 and p = 4.
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Figure 8: Variance of the solution for the mutually independent case, c approaches 0, after t = 3; M = 2 and p = 4.

5.2 Time-Independent Transport Velocity

We replace now the transport velocity V (t, x, θ) by V (x, θ) and assume that the stochastic transport velocity is

represented by the covariance matrix

C(x, y) = exp{−|x− y|
A

}.

An algorithm similar to the one used for time-dependent transport velocity was employed. For a length scale of

A = 1, for the fully-correlated case after a time of t = 1 we observed that the mean solution diverges. The cause is

attributed to the non-periodicity of the specified exponential kernel. To circumvent this difficulty, we constructed a

periodic covariance kernel, generated numerically as discussed in section 3; see figure 9.

We obtain the results presented in figures 10 and 11, after integrating to time t = 10. Here again agreement

between polynomial chaos and Monte Carlo simulation of 50,000 realizations is established.

5.3 Non-Gaussian Input

Lastly, we consider a case where the transport velocity is not Gaussian, but is given by the log-normal distribution

V (x, θ) = eh, h = h̄+
L∑

l=1

hlξl
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Figure 9: Numerically generated covariance kernel for periodic boundary conditions, c = 0.5.

            

Figure 10: Time-independent case: Mean velocity after t = 10.
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Figure 11: Time-independent case: Variance after t = 10.

In order to preserve the mean value of V , which was set to unity in the previous examples, the coefficients in the

above equations have to be chosen according to the relation

h̄+

N∑
l=1

h2
l

2
= 0.

For h̄ = 0 and hl small enough, we recover the Gaussian case by using a Taylor expansion for eh. The discrete

stochastic advection equation is now

∂αN
k

∂t
+

P∑
i=0

L∑
j=0

< ΨiΨjΨk >< Ψj(η) >
< Ψ2

j >< Ψ2
k >

exp{h̄+

N∑
l=1

h2
l

2
} ∂αN

i

∂x
|x=xn = 0

∀ k = 0, 1, 2, . . . , P and ∀ n = 0, 1, 2, . . . , N − 1

(42)

In figures 12 and 13 we show a typical result for the mean solution and the variance, respectively, obtained at t = 1.5.

A Monte Carlo simulation consisting of 20,000 realizations, is included to compare between the results obtained by

both methods as there is no exact solution available for this case. The accuracy of the approximation in the mean

is higher than in the variance but overall similar conclusions are valid for the lognormal distribution as well. In

[17] a more systematic study for several different distribution functions is performed, and appropriate orthogonal

polynomial functionals are introduiced as trial basis.
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Figure 12: Lognormal distribution mean solution corresponding to h1 = h2 and h̄ = −0.5 after t = 1.5
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Figure 13: Lognormal distribution variance corresponding to h1 = h2 and h̄ = −0.5 after t = 1.5
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6 Summary

We have developed a stochastic spectral method to solve the advection equation with a transport velocity described

by a Gaussian or a log-normal distribution. It employs Wiener-Hermite functionals, which are Hermite polynomials of

a Gaussian random variable ξ, which in turn depends on a random parameter θ. More general distributions can also

be handled with Wiener-Hermite expansions but we have found in ongoing work [17] that better representations with

other trial bases from the Askey scheme of polynomials lead to faster convergence compared to Hermite expansions.

The Wiener-Hermite expansion exhibits exponential convergence, which we verified for the space-independent case

for which an exact solution was obtained. To realize exponential convergence the stochastic input has to be accurately

represented but this depends on the correlation length of the stochastic input. In the case of poorly correlated input

a very large number of Karhunen-Loève terms are required to represent the input and fast convergence is not

achievable. The relatively poor resolution properties of Hermite expansions, compared to other spectral polynomials,

are well documented in the literature [19, 20]. However, re-scaling procedures, as done in [21], can be applied or a

change of the trial basis from the Askey scheme can be employed, as demonstrated in [17], to accelerate convergence.

Unfortunately, the exact resolution requirements are problem-dependent and there is not enough experience at the

moment in order to come up with practical rules.

As regards efficiency, we have compared with corresponding Monte Carlo simulations. Again, for the exact

solution the standard Monte Carlo approach we employed requires 200,000 realizations to achieve errors in the mean

solution of order of 10−2. The same accuracy can be achieved with a 10-term polynomial expansion leading to a

speed-up factor of 20,000. Clearly, better Monte Carlo approaches with accelerated convergence may reduce that

speed-up but it will still be more than a factor of 1,000. However, as we discussed above, for stochastic input that

is very weakly correlated the polynomial chaos approach requires a Karhunen-Loève expansion with many terms.

This may increase significantly the dimensionality and thus the computational complexity of the polynomial chaos

approach.
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